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Lecture 4

Filter Concepts/Terminology

Basic Properties of Electrical Circuits



Filter Design 

Process

Establish 

Specifications

- possibly TD(s) or HD(z)

- magnitude and phase

    characteristics or restrictions 

- time domain requirements

Approximation

- obtain acceptable transfer

   functions  TA(s) or HA(z)

- possibly acceptable realizable 

   time-domain   responses 

Synthesis

- build circuit or implement algorithm

   that has response close to TA(s) or 

   HA(z) 

-  actually realize TR(s) or HR(z)

Filter
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Filter Design Strategy:   Use the transfer function as an 

intermediate step between the Specifications and Circuit 

Implementation

Review from Last Time



Biquadratic Factorization
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and where K is a real constant and all coefficients are real (some may be 0) 

If n is odd and n≥m, 
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where

• Factorization is not unique

• H(z) factorizations not restricted to have m≤n

• Each biquatratic factor can be represented by any of the 6 alternative 

parameter sets in the numerator or denominator

Review from Last Time



Common Filter Architectures
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Cascaded Biquads

Leapfrog 

Multiple-loop Feedback

• Three classical filter architectures are shown

• The Cascaded Biquad and the Leapfrog approaches are most common

• The Cascaded Biquad structure follows directly from the Biquadratic Factorization

Review from Last Time



Common Filter Architectures

T1(s)
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VOUTVIN Tm(s)

Biquad

Cascaded Biquads

• Sequence in Cascade often affect performance

• Different biquadratic factorizations will provide different performance

• Although some attention was given to the different alternatives for biquadratic 

factorization, a solid general formulation of the cascade sequencing problem or 

the biquadratic factorization problem never evolved

  1 2 mT s T T T  

Review from Last Time



Filter Concepts and Terminology

• 2-nd order polynomial characterization

• Biquadratic Factorization

• Op Amp Modeling

• Stability and Instability

• Roll-off characteristics

• Distortion

• Dead Networks

• Root Characterization

• Scaling, normalization, and transformation



Gain, Bandwidth and GB
Frequency Dependent Model of  Op Amps
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Gain, Bandwidth and GB
Effects of GB on closed-loop Amplifiers 
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Gain, Bandwidth and GB
Effects of GB on closed-loop Amplifiers 
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Gain, Bandwidth and GB
Summary of Effects of GB on Basic Inverting and Noninverting Amplifiers
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Filter Concepts and Terminology

• 2-nd order polynomial characterization

• Biquadratic Factorization

• Op Amp Modeling

• Stability and Instability

• Roll-off characteristics

• Distortion

• Dead Networks

• Root Characterization

• Scaling, normalization, and transformation



Stability and Instability

True or False?

An unstable circuit will oscillate

Achieving stability is a major goal of the filter designer

Unstable circuits are of little use in designing filters

False – unstable circuits will either latch up or oscillate.  Latch-up is often  

the consequence  of saturating nonlinearities of circuits that have positive 

real axis poles

False – a filter is usually of little practical use if there are concerns about 

stability

False – will discuss details later



Theorem ?:

If a circuit is unstable, then if this circuit is included as a subcircuit in a 

larger circuit structure, the larger circuit will also be unstable.

Proof ?:

Unstable 
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VOUTVIN
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Circuit VOUTVIN
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Consider First Some Related Concepts 



Gain, Bandwidth and GB
Consider “positive feedback” closed-loop amplifier 
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Feedback Amplifier is Unstable !



Gain, Bandwidth and GB
Summary of Effects of GB on Basic Inverting and Noninverting Amplifiers with “Positive Feedback”
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Both FB Amplifiers are Unstable



Gain, Bandwidth and GB
Summary of Effects of GB on Basic Inverting and Noninverting Amplifiers with “Positive Feedback”
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Both FB Amplifiers are Unstable

Is “Positive Feedback” bad?

• Engineers often  make the assumption that positive feedback is bad and must 

be avoided

• Positive feedback in these stand-alone amplifiers resulted in unstable circuits

• Positive feedback is often very beneficial and should not be unilaterally avoided



Gain, Bandwidth and GB
Consider Op Amp with RHP Pole (Unstable Op Amp)
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Op Amp is Unstable, dc gain is negative



Gain, Bandwidth and GB
Consider Op Amp with RHP Pole (Unstable Op Amp)
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• Feedback Amplifier is stable and performs very well!

• Serves as counter-example for “Theorem”!



Consider another Filter Example:   
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Consider Filter Example:   
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RX (1+K)RX

Amplifier with gain K

VIN
VOUT

RX (1+K)RX

Amplifier with gain K

VIN
VOUT

• Stable Amplifier

• But if used in above, filter will be unstable

• Unstable Amplifier

• But if used in above, filter will be stable

• Serves as another counter example for 

“theorem”



Theorem:

If a circuit is unstable, then if this circuit is included as a subcircuit in a 

larger circuit structure, the larger circuit will also be unstable.

Proof:

Unstable 
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This theorem is not valid though many circuit and filter 

designers believe it to be true ! 



Filter Concepts and Terminology

XIN(z) XOUT(z)
 H z

XIN(s) XOUT(s)
 T s

Stability Issues:

Is stability or instability good or bad?

Often there is an impression that instability is bad  - but why?

Some observations:

• An unstable filter does not behave as a filter

• Unstable filter circuits are often used as waveform generators

• If an unstable circuit is embedded in a larger system, the larger system may

be stable or it may be unstable

• If a stable circuit is embedded in a larger system, the larger system may be

stable or it may be unstable

• Digital latches, RAMs, etc. are unstable amplifiers

• Some of the best filter circuits include an embedded unstable filter

Stability or Instability is neither good or bad, but it is important for the designer 

to be aware of the opportunities and limitations associated with this issue



Filter Concepts and Terminology

• 2-nd order polynomial characterization

• Biquadratic Factorization

• Op Amp Modeling

• Stability and Instability

• Roll-off characteristics

• Distortion

• Dead Networks

• Root Characterization

• Scaling, normalization, and transformation



Single-pole roll-off characterization
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Single-pole roll-off characterization
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Roll-off characterization

At frequencies well-past a pole or zero, each LHP pole (real or complex) 

causes a roll-off  in magnitude on a log-log axis of -20dB/decade and each 

LHP zero causes a roll-off of +20dB/decade

At frequencies of magnitude comparable to that of a pole or zero, it is not easy 

to predict the roll-off in the magnitude characteristics by some simple 

expression



Filter Concepts and Terminology

• 2-nd order polynomial characterization

• Biquadratic Factorization

• Op Amp Modeling

• Stability and Instability

• Roll-off characteristics

• Distortion

• Dead Networks

• Root Characterization

• Scaling, normalization, and transformation



Distortion in Filters

• Magnitude Distortion
– frequency dependent change in gain of a circuit 

(usuallybad if building amplifier but critical if building a 
filter)

• Phase Distortion
– a circuit has phase distortion if the phase of the 

transfer function is not linear with frequency

• Nonlinear Distortion
– Presence of frequency components in the outut that 

are not present in the input (generally considered bad 
in filters but necessary in many other circuits)



Stay Safe and Stay Healthy !



End of Lecture 4


